
Savify Documentation
Release 2.3.4

Laurence Rawlings

Jan 29, 2021

CONTENTS:

1 Savify 1
1.1 Savify . 1
1.2 Playlists . 2
1.3 Installation . 2
1.4 Usage . 2
1.5 For Developers . 5
1.6 Credits . 5

2 Installation 7
2.1 Stable release . 7
2.2 From sources . 7

3 Usage 9

4 Contributing 11
4.1 Types of Contributions . 11
4.2 Get Started! . 12
4.3 Pull Request Guidelines . 13
4.4 Tips . 13
4.5 Deploying . 13

5 Credits 15
5.1 Development Lead . 15
5.2 Contributors . 15

6 History 17
6.1 0.1.0 (2020-11-04) . 17

7 Indices and tables 19

i

ii

CHAPTER

ONE

SAVIFY

images/savify-banner.png

1.1 Savify

Savify is a python library that downloads songs from a selected provider (by default YouTube), and then scrapes the
meta information from Spotify. Given a query, Savify will find and download songs to mp3 format with quality as
high as 320 kb/s! The application will also scrape and write id3v2 tags to all your songs. Tags include title, artists,
year, album and even cover-art!

Savify supports all Spotify track, album, and playlist links. Additionally, there is an integrated search function so
even if you do not have the Spotify link you can simply enter song name and Savify will download it!

As well as mp3, Savify can also download and convert to other file types. Inside the application, you can specify
which format and quality you would like to download the song in for maximum compatibility across all your devices.
Available formats: mp3, aac, flac, m4a, opus, vorbis, and wav. Tags and cover art will only be applied to songs
downloaded in mp3 format.

Please note this library does not go against Spotify TOS in any way, songs are not ripped directly from Spotify, but are
instead downloaded from other sources such as YouTube and Soundcloud using the youtube-dl python library. Spotify
is only used to gather accurate meta information to be embedded into the downloaded song files.

Any questions or feedback join the Discord Server

1

https://pypi.python.org/pypi/savify
https://travis-ci.org/github/LaurenceRawlings/savify
https://savify.readthedocs.io
https://github.com/laurencerawlings/savify/releases
https://github.com/laurencerawlings/savify/releases
https://discordapp.com/invite/SPuPEda
https://github.com/laurencerawlings/savify/stargazers
https://github.com/laurencerawlings/savify/graphs/contributors
https://pyup.io/repos/github/LaurenceRawlings/savify/
https://github.com/LaurenceRawlings/savify
https://discordapp.com/invite/SPuPEda

Savify Documentation, Release 2.3.4

1.1.1 FFmpeg

Savify relies on the open source FFmpeg library to convert and write metadata to the songs it downloads. Please make
sure FFmpeg is installed on your computer and added to the System PATH. Follow the tutorial here.

1.2 Playlists

If you want to use Savify to download personal Spotify playlists, ensure their visibility is set to ‘Public’. This is so
Savify can use the Spotify API to retrieve the song details from your playlist.

1.3 Installation

If you are on Windows you can download the latest pre-packed executable package (which I recommend as you will
not have to provide a Savify API key), or you can download the python library and run the module directly using the
CLI.

1.3.1 Download the latest release

Go here to download the latest Savify.exe then make sure you have:

• FFmpeg downloaded and it added to your Path

• Spotify API credentials added to your environment variables

That is it, you should be good to go! See some usage examples below.

1.3.2 Using the Python module

$ pip install -U savify

1.4 Usage

Currently Savify only supports Spotify URLs and search queries, however support for Spotify URIs will be added in
the future.

1.4.1 CLI

If you have downloaded the latest Savify.exe from the releases page open your terminal and navigate to the same
directory as the binary, then you can run:

$ Savify.exe

If you are using the Python package and savify is installed to your site-packages and your pip folder is in your PATH
(which it should be by default), from anywhere you can simply run:

$ savify

2 Chapter 1. Savify

https://ko-fi.com/laurencerawlings
https://github.com/adaptlearning/adapt_authoring/wiki/Installing-FFmpeg
https://github.com/LaurenceRawlings/savify/releases

Savify Documentation, Release 2.3.4

For help run:

$ savify --help

General usage

Using the default above:

$ savify "https://open.spotify.com/track/4Dju9g4NCz0LDxwcjonSvI"

Specifying your own options:

$ savify "https://open.spotify.com/track/4Dju9g4NCz0LDxwcjonSvI" -q best -f
mp3 -o "/path/to/downloads" -g "%artist%/%album%"

With a search query:

$ savify "You & I - Bru-C" -t track -q best -f mp3 -o "/path/to/downloads" -g
"%artist%/%album%"

Grouping

Available variables: %artist%, %album%, %playlist%

For example:

$ savify "You & I - Bru-C" -o /path/to/downloads -g "%artist%/%album%"

Would download in the following directory structure:

/path/to/downloads
|
|- /Bru-C

|
|- /Original Sounds

|
|- Bru-C - You & I.mp3

1.4.2 Download Defaults

Query Type track

Quality best

Format mp3

Path Windows: HOME/AppData/Roaming/Savify/downloads

Linux: HOME/.local/share/Savify/downloads

MacOS: HOME/Library/Application Support/Savify/downloads

Grouping no grouping

For more usage examples read the docs.

1.4. Usage 3

https://savify.readthedocs.io

Savify Documentation, Release 2.3.4

1.4.3 Spotify Application

To use the Savify Python module you will need your own Spotify developer application to access their API. To do this
sign up here. When you have made a new application take note of your client id and secret. You can pass the id and
secret to Savify in two ways:

Environment variables (recommended)

Now you need to add 2 environment variables to your system:

SPOTIPY_CLIENT_ID

SPOTIPY_CLIENT_SECRET

To find out how to do this find a tutorial online for your specific operating system. Once you have done this make sure
to restart your shell.

During object instantiation

You can pass in your id and secret using a tuple when creating your Savify object:

s = Savify(api_credentials=("CLIENT_ID","CLIENT_SECRET"))

1.4.4 Use in your Python project

Install the package to your environment:

$ pip install savify

Import and use Savify:

from savify import Savify
from savify.types import Type, Format, Quality

s = Savify()
Spotify URL
s.download("SPOTIFY URL")

Search Query
Types: TRACK, ALBUM, PLAYLIST
s.download("QUERY", query_type=Type.TRACK)

Savify optional constructor arguments (see above for defaults):

import logging

from savify import Savify
from savify.types import Type, Format, Quality
from savify.utils import PathHolder

Quality Options: WORST, Q32K, Q96K, Q128K, Q192K, Q256K, Q320K, BEST
Format Options: MP3, AAC, FLAC, M4A, OPUS, VORBIS, WAV
Savify(api_credentials=None, quality=Quality.BEST, download_format=Format.MP3, path_
→˓holder=PathHolder(downloads_path='path/for/downloads'), group='%artist%/%album%',
→˓quiet=False, skip_cover_art=False, log_level=logging.INFO)

4 Chapter 1. Savify

https://developer.spotify.com/

Savify Documentation, Release 2.3.4

Manually customising youtube-dl options:

from savify import Savify

options = {
'cookiefile': 'cookies.txt'

}

Savify(ydl_options=options)

Passing in your own logger:

from savify import Savify
from savify.logger import Logger

logger = Logger(log_location='path/for/logs', log_level=None) # Silent output

Savify(logger=logger)

The group argument is used to sort you downloaded songs inside the output path. Possible variables for the path string
are: %artist%, %album%, and %playlist%. The variables are replaced with the songs metadata. For example, a song
downloaded with the above Savify object would save to a path like this: path/for/downloads/Example Artist/Example
Album/Example Song.mp3

1.5 For Developers

If you want to try your hand at adding to Savify use the instructions here. From there you can make any additions you
think would make Savify better.

1.5.1 Tip

If you are developing Savify, install the pip package locally so you can make and test your changes. From the root
directory run:

$ pip install -e .

You can then run the Python module:

$ savify

1.6 Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

1.5. For Developers 5

CONTRIBUTING.rst
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

Savify Documentation, Release 2.3.4

6 Chapter 1. Savify

CHAPTER

TWO

INSTALLATION

2.1 Stable release

To install Savify, run this command in your terminal:

$ pip install savify

This is the preferred method to install Savify, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for Savify can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/LaurenceRawlings/savify

Or download the tarball:

$ curl -OJL https://github.com/LaurenceRawlings/savify/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

7

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/LaurenceRawlings/savify
https://github.com/LaurenceRawlings/savify/tarball/master

Savify Documentation, Release 2.3.4

8 Chapter 2. Installation

CHAPTER

THREE

USAGE

To use Savify in a project:

import savify

9

Savify Documentation, Release 2.3.4

10 Chapter 3. Usage

CHAPTER

FOUR

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

4.1 Types of Contributions

4.1.1 Report Bugs

Report bugs at https://github.com/LaurenceRawlings/savify/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

4.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

4.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

4.1.4 Write Documentation

Savify could always use more documentation, whether as part of the official Savify docs, in docstrings, or even on the
web in blog posts, articles, and such.

11

https://github.com/LaurenceRawlings/savify/issues

Savify Documentation, Release 2.3.4

4.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/LaurenceRawlings/savify/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

4.2 Get Started!

Ready to contribute? Here’s how to set up savify for local development.

1. Fork the savify repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/savify.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv savify
$ cd savify/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 savify tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

12 Chapter 4. Contributing

https://github.com/LaurenceRawlings/savify/issues

Savify Documentation, Release 2.3.4

4.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Check https://travis-ci.com/
LaurenceRawlings/savify/pull_requests and make sure that the tests pass for all supported Python versions.

4.4 Tips

To run a subset of tests:

$ pytest tests.test_savify

4.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

4.3. Pull Request Guidelines 13

https://travis-ci.com/LaurenceRawlings/savify/pull_requests
https://travis-ci.com/LaurenceRawlings/savify/pull_requests

Savify Documentation, Release 2.3.4

14 Chapter 4. Contributing

CHAPTER

FIVE

CREDITS

5.1 Development Lead

• Laurence Rawlings <contact@laurencerawlings.com>

5.2 Contributors

None yet. Why not be the first?

15

mailto:contact@laurencerawlings.com

Savify Documentation, Release 2.3.4

16 Chapter 5. Credits

CHAPTER

SIX

HISTORY

6.1 0.1.0 (2020-11-04)

• First release on PyPI.

17

Savify Documentation, Release 2.3.4

18 Chapter 6. History

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

19

	Savify
	Savify
	Playlists
	Installation
	Usage
	For Developers
	Credits

	Installation
	Stable release
	From sources

	Usage
	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips
	Deploying

	Credits
	Development Lead
	Contributors

	History
	0.1.0 (2020-11-04)

	Indices and tables

